An HMG1-like protein facilitates Wnt signaling in Caenorhabditis elegans.

نویسندگان

  • L I Jiang
  • P W Sternberg
چکیده

We show that during Caenorhabditis elegans male spicule development, the specification of a glial versus neuronal cell fate in a canonical neurogenic sublineage is dependent on Wnt signaling. Inactivation of a Wnt signaling pathway mediated by the Wnt receptor LIN-17 transforms the SPD sheath cell into its sister, the SPD neuron. We discovered a new mutant, son-1, that displays this same cell fate transformation. The son-1 mutation enhances the phenotypes of reduction-of-function lin-17 mutants in several developmental processes, including vulva development, somatic gonad development, and male tail patterning. son-1 encodes an HMG1/2-like DNA-binding protein and is localized in all cell nuclei through development as revealed by a GFP reporter construct. Disruption of son-1 function by RNA-mediated interference results in the same spicule defect as caused by overexpression of POP-1, a TCF/LEF class HMG protein known to act downstream of the Wnt signaling pathway. Our results provide in vivo evidence for the functional involvement of an HMG1/2-like protein, SON-1, in Wnt signaling. The sequence nonspecific HMG protein SON-1 and the sequence specific HMG protein POP-1 might both act in the Wnt responding cells to regulate gene transcription in opposite directions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Wnt signaling during Caenorhabditis elegans postembryonic development.

Wnts play a central role in the development of many cells and tissue types in all species studied to date. Like many other extracellular signaling pathways, secreted Wnt proteins are involved in many different processes; in C. elegans these include: cell proliferation, differentiation, cell migration, control of cell polarity, axon outgrowth and control of the stem cell niche. Perturbations in ...

متن کامل

The Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration.

During Caenorhabditis elegans development, the HSN neurons and the right Q neuroblast and its descendants undergo long-range anteriorly directed migrations. Both of these migrations require EGL-20, a C. elegans Wnt homolog. Through a canonical Wnt signaling pathway, EGL-20/Wnt transcriptionally activates the Hox gene mab-5 in the left Q neuroblast and its descendants, causing the cells to migra...

متن کامل

Wnt signaling.

The use of Wnt ligands for signaling between cells is a conserved feature of metazoan development. Activation of Wnt signal transduction pathways upon ligand binding can regulate diverse processes including cell proliferation, migration, polarity, differentiation and axon outgrowth. A 'canonical' Wnt signaling pathway has been elucidated in vertebrate and invertebrate model systems. In the cano...

متن کامل

Regulation of WNT Signaling at the Neuromuscular Junction by the Immunoglobulin Superfamily Protein RIG-3 in Caenorhabditis elegans

Perturbations in synaptic function could affect the normal behavior of an animal, making it important to understand the regulatory mechanisms of synaptic signaling. Previous work has shown that in Caenorhabditis elegans an immunoglobulin superfamily protein, RIG-3, functions in presynaptic neurons to maintain normal acetylcholine receptor levels at the neuromuscular junction (NMJ). In this stud...

متن کامل

The long and the short of Wnt signaling in C. elegans.

The simplicity of C. elegans makes it an outstanding system to study the role of Wnt signaling in development. Many asymmetric cell divisions in C. elegans require the Wnt/beta-catenin asymmetry pathway. Recent studies confirm that SYS-1 is a structurally and functionally divergent beta-catenin, and implicate lipids and retrograde trafficking in maintenance of WRM-1/beta-catenin asymmetry. Wnts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 13 7  شماره 

صفحات  -

تاریخ انتشار 1999